3. Find the missing dimension.

a)

b)

c)

60 cm 10 cm

6 cm

ACTIVITY 4 Net of a cone (Constructing cones)

The net of a cone is composed of a circular sector and a disc.

- a) Draw on construction paper
 - 1. a circular sector with a radius of 6 cm and a central angle measuring 120°.
 - 2. a disc with a 2 cm radius.

- **b)** 1. Calculate the length of the arc AB. 4π cm
 - 2. Calculate the circumference of the circle with a 2 cm radius. 4π cm
 - 3. Verify that the length of the arc AB is equal to the circumference of the circle.
- c) 1. Cut out the circular sector and fold it as illustrated on the right.
 - 2. Cut out the disc and glue it to the arc of the circular sector to complete the construction of the cone.
- d) What do the following become for the cone?
 - 1. The surface of the circular sector AOB. The lateral surface of the cone
 - 2. The radius of the circular sector AOB. The slant height of the cone

ACTIVITY 5 Net of a cone (Finding the angle of the circular sector)

The net of a cone with slant height s=4 cm and radius r=0.8 cm is represented on the right.

- a) 1. What can be said about the measure of the arc AB and the circumference of the cone's base? _____ They are equal.
 - 2. What is the measure of the arc AB? $_$ 1.6 π cm
- b) Determine the circumference C of the large disc with radius s (represented as dotted). 8 π cm
- c) The central angle *a*, the measure of the arc AB and the circumference C of the large disc form the proportion:

$$\frac{a}{360^{\circ}} = \frac{\widehat{\text{mAB}}}{C}$$

Determine the measure of the angle *a* using this proportion. ____

$$\frac{a}{360^{\circ}} = \frac{1.6\pi}{8\pi} \Rightarrow a = 72^{\circ}$$

d) Verify the proportion
$$\frac{a}{360^{\circ}} = \frac{r}{s} = \frac{72^{\circ}}{360^{\circ}} = \frac{0.8}{4}$$
 True

167

NET OF A CONE

- The net of a cone with radius *r* and slant height *s* includes:
 - a circular sector of radius s (slant height of the cone) and central angle a, representing the conical surface.
 - a disc of radius r, representing the base of the cone.
- The following proportions are obtained:

$$\frac{a}{360^{\circ}} = \frac{\widehat{\text{mAB}}}{2\pi s}$$
 and $\frac{a}{360^{\circ}} =$

Complete the following table using the given net of a cone and the proportion $\frac{r}{s} = \frac{a}{360^{\circ}}$.

a (°)	r (cm)	s (cm)	mÂB (cm)
60°	2	12	4 π
90°	3	12	6 π
45°	0.5	4	π
30°	2	24	4 π
45°	1	8	2π

- 5. Explain the procedure for constructing a cone with a 3 cm radius and height of 4 cm.
 - 1. Calculate the slant height of the cone: $s^2 = h^2 + r^2$; $s^2 = 25$; s = 5 cm.
 - 2. Calculate the central angle of the circular sector.

$$\frac{a}{360^{\circ}} = \frac{r}{s} \Rightarrow \frac{a}{360^{\circ}} = \frac{3}{5} \Rightarrow a = 216^{\circ}$$

- 3. Draw this circular sector with a 5 cm radius (slant height of the cone).
- 4. Draw a disc with a 3 cm radius.