Name: Answer Key

How to find the coordinates of a point where 2 lines meet.

- a. Make both equations look like: y = ax + b'
- b. Make both equations equal to each other
- c. Solve for 'x'
- d. Plug the value of 'x' back into one of the two equations and solve for 'y'
- 1) Solve for x then, solve for y.

a)
$$3x + 4 = 6x - 8$$

$$0 \quad 3x - 6x = -8 - 4$$

$$-3x = -12$$

$$-3 \quad -3$$

$$x = 4$$

$$y = 3x + 4$$

$$y = 3(4) + 4$$

$$y = 16$$

$$(4, 16)$$

c)
$$\frac{1}{4}x - 25 = -\frac{5}{8}x + 45$$

$$\begin{array}{c}
0 & \frac{1}{4} \times + \frac{5}{8} \times = 45 + 25 \\
\frac{2}{8} \times + \frac{5}{8} \times = 70 \\
\frac{7}{8} \times = 70 \\
x = 80
\end{array}$$

(2)
$$y = \frac{1}{4}x - 25$$

 $y = \frac{1}{4}(80) - 25$
 $y = -5$ (80, -5)

b)
$$11x + 7 = -15x - 32$$

$$\begin{array}{c}
\text{O IIX + I5x = -32 - 7} \\
26x = -39 \\
26 & 26 \\
x = -1.5
\end{array}$$

$$y = 11x+7$$

$$y = 11(-1.5)+7$$

$$y = -9.5$$

$$(-1.5, -9.5)$$

d)
$$\frac{1}{2}x + 10 = \frac{3}{4}x - 2.5$$

(2)
$$y = \frac{1}{2}x + 10$$

 $y = \frac{1}{2}(50) + 10$
 $y = 35$ (50,35)

2) What are the coordinates of the point where the following two lines meet?

Equation 1: y = 2x + 6

$$\begin{array}{c}
\text{(1)} & 2x+6 = 6x-8 \\
2x-6x = -8-6 \\
& \frac{-4x}{-4} = \frac{-14}{-4} \\
& x = 3.5
\end{array}$$

Equation 2: y = 6x - 8

(2)
$$y = 2x + 6$$

 $y = 2(3.5) + 6$
 $y = 13$

Answer (3.5, 13)

3) What are the coordinates of the point where the following two lines meet?

Equation 1: 2y = -4x + 16 $\overline{2}$ $\overline{2}$ $\overline{2}$

$$\frac{4}{-4} \times \frac{-24}{-4}$$

$$\times = 6$$

Equation 2:
$$\frac{-10x + 5y + 80 = 0}{5}$$

 $\frac{-2x + y + 16 = 0}{5}$

2y=-4x+16 OR y=-2x+8 2y=-4(6)+16

Answer (________)

4) What are the coordinates of the point where the following two lines meet?

$$3y = 45x + 180$$
 and $2y = 26x + 160$
 $3 = 3$
 $3 = 3$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$
 $3 = 2$

Find y
$$y = 15x + 60$$

$$y = 15(10) + 60$$

$$y = 150 + 60$$

$$y = 210$$

Answer $(\underline{0},\underline{20})$

5) What is the value of 'y' when both equations below intersect (meet)?

$$y = 1.5x - 7$$

$$y = 1.5x - 7$$
 $y + 1.5x - 2 = 0$
 $y = -1.5x + 2$

Find
$$x$$

1.5 x -7 = -1.5 x +2

1.5 x +1.5 x = +2+7

3 x =9
3 3

Find y
$$y = 1.5x - 7$$
 $y = 1.5(3) - 7$
 $y = -2.5$

Answer = 2.5

6) What are the coordinates of the point where both lines from the graph below intersect (meet)?

Two steps:

- 1) find the equation of both lines
- 2) then solve for x and y.

Line 1
$$\frac{y_2 - y_1}{y_2 - x_1} = \frac{0 - 2R}{56 - 0} = \frac{-28}{56} = -\frac{1}{2}$$

$$y = ax + b$$

$$y = ax + b$$

$$y = -\frac{1}{2}x + 28$$

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{63 - (-12)}{30 - 0} = \frac{75}{30} = \frac{15}{6} = \frac{5}{2}$$

$$\frac{\text{Find } x}{y_1 = -\frac{1}{2} \times +28}$$

$$-\frac{1}{2} \times +28 = \frac{5}{2} \times -12$$

$$-\frac{1}{2} \times -\frac{5}{2} \times = -12 - 28$$

$$X = \boxed{\frac{40}{3}} = 13.\overline{3}$$

Find y
$$y = -\frac{1}{2}(\frac{40}{3}) + 28$$

$$y = -\frac{40}{6} + 28$$

$$y = -\frac{40}{168} + \frac{168}{160}$$

$$y = \frac{128}{160} = \frac{164}{3} = 21.3$$

Answer ($\frac{40/3}{3}$, $\frac{64/3}{3}$)

7) **Sarah** and **Ashley** both work at the same store.

Sarah gets a 15\$ base salary and earns 4\$ for every shirt that she sells. Ashley gets a 25\$ base salary and earns 3\$ for every shirt that she sells.

Sketch a graph of this situation Not drawn to scale

- a) How many shirts must Sarah and Ashley each sell to make the same amount of money?
- b) How much money will they each earn?

Sarah's Rule:

Ashley's Rule:

4= 4x+15

4x+15 = 3x + 254x-3x = 25-15 x = 10

They have to each sell 10 shirts to make the same amount

Plug x value into one of the original equations y=4x+15 y=4(10)+15 y=55

They will each earn 55 \$

- a) Number of shirts when they make the same money = ___
- b) Amount of money they earn when they make the same money = \$ ___

8) What is the *point of intersection* between the lines defined by the linear equations below?

Eq. 1)
$$y = 4.5x + 8$$

Find x

$$4.5x+8 = -3.5x - 64$$

 $4.5x+3.5x = -64-8$
 $8x = -72$
 $x = -9$

Eq. 2)
$$y = -3.5x - 64$$

(2) Find y

$$y = 4.5 \times +8$$

 $y = 4.5(-9) +8$
 $y = -32.5$

Answer
$$(-9, -32.5)$$

9) What is the *point of intersection* between the lines defined by the equations below?

Eq. 1)
$$\frac{6y}{6} = \frac{5x - 42}{6}$$

 $y = \frac{5}{6}x - 7$
 $\frac{5}{6}x - 7 = -\frac{1}{3}x + 28$
 $\frac{5}{6}x + \frac{1}{3}x = 28 + 7$
 $\frac{5}{6}x + \frac{2}{6}x = 28 + 7$
 $\frac{7}{6}x = 35$
 $\frac{7}{6}x = 35$

Eq. 2)
$$\frac{1x + 3y - 84 = 0}{3 + 3}$$
$$y = -\frac{1}{3}x + 28$$

$$y = \frac{5}{6}(x) - 7$$
 $y = \frac{5}{6}(30) - 7$
 $y = 18$

Answer (<u>30</u>, <u>18</u>)

10) What is the *point of intersection* between lines 1 and 2 shown below?

(2)
$$y = -3.5 \times +32$$

 $y = -3.5(8) +32$
 $y = -28 +32$
 $y = 1$
Answer (8, 4)

- (x,y)
- 11) What is the *point of intersection* between lines 1 and 2 shown below?

- $\begin{array}{c}
 1.5x + 8.5 &= -0.4x + 18 \\
 1.5x + 0.4x &= 18 8.5 \\
 \underline{1.9x} &= 9.5 \\
 1.9 \\
 1.9 \\
 X &= 5
 \end{array}$

Answer $(\underline{5},\underline{1b})$

(xyy)

12) Find the point of intersection between lines 1 and 2.

Find equation of line 1

$$\frac{4z-4}{x_2-x_1} = \frac{84-0}{0-1-12} = \frac{84}{12} = 7$$
 $\frac{4}{x_2-x_1} = \frac{4}{x_2-x_1} = \frac{4}{x_2-x_1} = \frac{4}{x_2-x_1} = \frac{119-56}{0-(-14)} = \frac{63}{14} = 4.5$
 $\frac{4}{x_2-x_1} = \frac{119-56}{0-(-14)} = \frac{63}{14} = 4.5$
 $\frac{4}{x_2-x_1} = \frac{4.5}{0-(-14)} = \frac{63}{14} = 4.5$

Find
$$x$$
 $7x + 84 = 4.5x + 119$
 $7x - 4.5x = 119 - 84$
 $2.5x = 35$
 2.5
 $x = 14$

Find y
 $y = 7x + 84$
 $y = 7(14) + 84$
 $y = 182$

Point of Intersection (14, 182)